6 research outputs found

    Conditional Generative Models are Provably Robust: Pointwise Guarantees for Bayesian Inverse Problems

    Full text link
    Conditional generative models became a very powerful tool to sample from Bayesian inverse problem posteriors. It is well-known in classical Bayesian literature that posterior measures are quite robust with respect to perturbations of both the prior measure and the negative log-likelihood, which includes perturbations of the observations. However, to the best of our knowledge, the robustness of conditional generative models with respect to perturbations of the observations has not been investigated yet. In this paper, we prove for the first time that appropriately learned conditional generative models provide robust results for single observations

    Generative Sliced MMD Flows with Riesz Kernels

    Full text link
    Maximum mean discrepancy (MMD) flows suffer from high computational costs in large scale computations. In this paper, we show that MMD flows with Riesz kernels K(x,y)=xyrK(x,y) = - \|x-y\|^r, r(0,2)r \in (0,2) have exceptional properties which allow for their efficient computation. First, the MMD of Riesz kernels coincides with the MMD of their sliced version. As a consequence, the computation of gradients of MMDs can be performed in the one-dimensional setting. Here, for r=1r=1, a simple sorting algorithm can be applied to reduce the complexity from O(MN+N2)O(MN+N^2) to O((M+N)log(M+N))O((M+N)\log(M+N)) for two empirical measures with MM and NN support points. For the implementations we approximate the gradient of the sliced MMD by using only a finite number PP of slices. We show that the resulting error has complexity O(d/P)O(\sqrt{d/P}), where dd is the data dimension. These results enable us to train generative models by approximating MMD gradient flows by neural networks even for large scale applications. We demonstrate the efficiency of our model by image generation on MNIST, FashionMNIST and CIFAR10

    PatchNR: Learning from Very Few Images by Patch Normalizing Flow Regularization

    Full text link
    Learning neural networks using only few available information is an important ongoing research topic with tremendous potential for applications. In this paper, we introduce a powerful regularizer for the variational modeling of inverse problems in imaging. Our regularizer, called patch normalizing flow regularizer (patchNR), involves a normalizing flow learned on small patches of very few images. In particular, the training is independent of the considered inverse problem such that the same regularizer can be applied for different forward operators acting on the same class of images. By investigating the distribution of patches versus those of the whole image class, we prove that our model is indeed a MAP approach. Numerical examples for low-dose and limited-angle computed tomography (CT) as well as superresolution of material images demonstrate that our method provides very high quality results. The training set consists of just six images for CT and one image for superresolution. Finally, we combine our patchNR with ideas from internal learning for performing superresolution of natural images directly from the low-resolution observation without knowledge of any high-resolution image

    Learning Regularization Parameter-Maps for Variational Image Reconstruction using Deep Neural Networks and Algorithm Unrolling

    Get PDF
    We introduce a method for fast estimation of data-adapted, spatio-temporally dependent regularization parameter-maps for variational image reconstruction, focusing on total variation (TV)-minimization. Our approach is inspired by recent developments in algorithm unrolling using deep neural networks (NNs), and relies on two distinct sub-networks. The first sub-network estimates the regularization parameter-map from the input data. The second sub-network unrolls T iterations of an iterative algorithm which approximately solves the corresponding TV-minimization problem incorporating the previously estimated regularization parameter-map. The overall network is trained end-to-end in a supervised learning fashion using pairs of clean-corrupted data but crucially without the need of having access to labels for the optimal regularization parameter-maps. We prove consistency of the unrolled scheme by showing that the unrolled energy functional used for the supervised learning Γ-converges as T tends to infinity, to the corresponding functional that incorporates the exact solution map of the TV-minimization problem. We apply and evaluate our method on a variety of large scale and dynamic imaging problems in which the automatic computation of such parameters has been so far challenging: 2D dynamic cardiac MRI reconstruction, quantitative brain MRI reconstruction, low-dose CT and dynamic image denoising. The proposed method consistently improves the TV-reconstructions using scalar parameters and the obtained parameter-maps adapt well to each imaging problem and data by leading to the preservation of detailed features. Although the choice of the regularization parameter-maps is data-driven and based on NNs, the proposed algorithm is entirely interpretable since it inherits the properties of the respective iterative reconstruction method from which the network is implicitly defined

    Unrolled three-operator splitting for parameter-map learning in low dose X-ray CT reconstruction

    Get PDF
    We propose a method for fast and automatic estimation of spatially dependent regularization maps for total variation-based (TV) tomography reconstruction. The estimation is based on two distinct sub-networks, with the first sub-network estimating the regularization parameter-map from the input data while the second one unrolling T iterations of the Primal-Dual Three-Operator Splitting (PD3O) algorithm. The latter approximately solves the corresponding TV-minimization problem incorporating the previously estimated regularization parameter-map. The overall network is then trained end-to-end in a supervised learning fashion using pairs of clean-corrupted data but crucially without the need of having access to labels for the optimal regularization parameter-maps

    WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for Superresolution

    Full text link
    Exploiting image patches instead of whole images have proved to be a powerful approach to tackle various problems in image processing. Recently, Wasserstein patch priors (WPP), which are based on the comparison of the patch distributions of the unknown image and a reference image, were successfully used as data-driven regularizers in the variational formulation of superresolution. However, for each input image, this approach requires the solution of a non-convex minimization problem which is computationally costly. In this paper, we propose to learn two kinds of neural networks in an unsupervised way based on WPP loss functions. First, we show how convolutional neural networks (CNNs) can be incorporated. Once the network, called WPPNet, is learned, it can very efficiently applied to any input image. Second, we incorporate conditional normalizing flows to provide a tool for uncertainty quantification. Numerical examples demonstrate the very good performance of WPPNets for superresolution in various image classes even if the forward operator is known only approximately
    corecore